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ABSTRACT 

This paper focuses on the modeling, design, 
and control of a single-phase solar 
photovoltaic (PV) supply system for grid-

connected applications. The system employs a 
two-stage power conversion process in which 
a step-up converter (SUC) is placed between 
the PV array and the DC bus of a voltage 
source converter (VSC). To achieve maximum 
power extraction, a fuzzy logic controller 
(FLC) is implemented for the switching of the 
SUC, providing reliable maximum power 
point tracking (MPPT) under dynamic solar 
conditions. While the FLC-based approach 
ensures efficient energy utilization, power 
quality remains a critical concern due to 
harmonic distortion. To overcome this 
challenge, the proposed system is extended by 
integrating a neural network (NN) controller. 
The NN enhances adaptability and learning 
capability, enabling further reduction of Total 
Harmonic Distortion (THD) in the grid current 
while improving dynamic response. The 
performance of the combined FLC-NN control 
strategy is verified through 
MATLAB/Simulink simulations. Results 
indicate that the hybrid approach improves 
MPPT efficiency, minimizes THD, and ensures 
compliance with power quality standards. This 
makes the system highly effective for 
residential and small-scale solar PV 
applications, supporting reliable renewable 
energy integration into the grid. 
Keywords: Solar Photovoltaic System; MPPT; 
Fuzzy Logic Controller; Neural Network 
Controller; Step-Up Converter; Voltage Source 
Converter; THD; Power Quality. 
 

I. INTRODUCTION 

The rapid depletion of fossil fuel reserves and 
the increasing threat of climate change have 
significantly accelerated the adoption of 
renewable energy sources across the globe. 
Among these, solar photovoltaic (PV) 
technology has emerged as one of the most 
promising solutions due to its abundance, 
scalability, and environmental sustainability. 
Grid-connected PV systems are increasingly 
deployed in residential, commercial, and 
utility-scale applications to meet the growing 
electricity demand while reducing greenhouse 
gas emissions [1]. However, the inherent 
intermittency of solar energy poses challenges 
in maintaining reliable and efficient power 
delivery to the grid. Variations in solar 
irradiance and ambient temperature lead to 
fluctuations in PV output, making maximum 
power point tracking (MPPT) essential for 
stable operation [2]. Conventional MPPT 
methods such as Perturb and Observe (P&O) 
and Incremental Conductance (INC) have been 
widely adopted due to their simplicity and low 
computational requirements. Nevertheless, 
these algorithms often suffer from slow 
convergence, steady-state oscillations, and 
poor tracking under rapidly changing 
environmental conditions [3]. As a result, 
advanced intelligent control techniques have 
been developed to enhance MPPT 
performance. Among them, fuzzy logic 
controllers (FLCs) have gained popularity 
because of their rule-based decision-making 
capability, adaptability to nonlinear systems, 
and independence from precise mathematical 
models [4]. Despite these advantages, FLCs 
face limitations in harmonic suppression and 
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dynamic adaptability, especially in grid-

connected single-phase PV systems. 
To overcome these shortcomings, artificial 
intelligence (AI)-based methods such as neural 
networks (NNs) have been integrated with 
FLCs to form hybrid control strategies. Neural 
networks are capable of learning nonlinear 
relationships between system inputs and 
outputs, enabling them to adapt dynamically to 
changing operating conditions [5]. When 
combined with fuzzy logic, they provide both 
interpretability and learning capability, 
offering a robust framework for MPPT and 
power quality improvement. This hybrid FLC–
NN approach has shown significant potential 
in reducing Total Harmonic Distortion (THD), 
improving dynamic response, and ensuring 
compliance with IEEE-519 power quality 
standards [6]. Another critical challenge in 
grid-connected PV systems is ensuring 
synchronization with grid parameters while 
maintaining sinusoidal current injection and 
minimizing distortions [7]. Voltage Source 
Converters (VSCs) play a crucial role in this 
process, as they convert DC output from the 
PV array into AC power suitable for grid 
integration. However, inverter switching 
operations often introduce harmonic 
distortions, which can degrade power quality, 
damage equipment, and reduce efficiency. 
Traditional PI controllers used in VSCs are not 
sufficient to address these complex challenges 
[8]. Intelligent control strategies, such as the 
FLC–NN hybrid model, provide an effective 
solution by simultaneously optimizing MPPT 
and harmonic suppression. 
In recent years, extensive research has been 
devoted to developing advanced control 
strategies for PV systems to maximize energy 
harvesting and ensure high-quality power 
delivery [9]. Researchers have proposed novel 
MPPT algorithms, optimized converter 
topologies, and adaptive controllers to improve 
efficiency and stability. Studies indicate that 
the combination of intelligent control with 
high-gain DC–DC converters significantly 
enhances performance under fluctuating 
irradiance [10]. Similarly, the integration of 

machine learning-based controllers with 
conventional methods has proven effective in 
enhancing adaptability and robustness [11]. 
The present work contributes to this growing 
body of research by modeling, designing, and 
controlling a single-phase grid-connected solar 
PV system using a hybrid fuzzy logic and 
neural network-based MPPT. The proposed 
system employs a two-stage power conversion 
process: a Step-Up Converter (SUC) regulates 
the PV output and maintains a stable DC link, 
while a Voltage Source Converter (VSC) 
interfaces with the grid. The FLC ensures 
effective MPPT, while the neural network 
enhances learning, adaptability, and harmonic 
reduction. Simulation results in 
MATLAB/Simulink validate the effectiveness 
of this approach, showing improved MPPT 
efficiency, reduced THD, and stable grid 
interaction under dynamic conditions [12]. The 
significance of this study lies in its potential to 
contribute to sustainable energy integration by 
improving the reliability, efficiency, and power 
quality of grid-connected PV systems. By 
leveraging hybrid intelligent controllers, the 
proposed system addresses critical challenges 
such as nonlinearity, environmental variability, 
and harmonic distortion. Furthermore, the 
methodology can be extended to multi-phase 
and hybrid renewable energy systems, paving 
the way for more resilient and intelligent 
power systems in the future. 

II. LITERATURE SURVEY  
The advancement of solar PV systems has 
been accompanied by extensive research into 
MPPT techniques, converter topologies, and 
intelligent control methods. Early MPPT 
methods, such as Perturb and Observe (P&O) 
and Incremental Conductance (INC), laid the 
foundation for PV energy harvesting [13]. 
While these methods are simple and cost-
effective, they exhibit oscillations around the 
maximum power point (MPP) and fail to track 
accurately under rapidly changing irradiance. 
To address these drawbacks, researchers 
introduced improved versions of P&O and 
INC, incorporating adaptive step sizes and 
predictive models [14]. With the growth of 
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artificial intelligence applications in power 
electronics, fuzzy logic controllers (FLCs) 
emerged as a powerful tool for MPPT. FLCs 
do not require precise mathematical models 
and are capable of handling uncertainties in 
PV characteristics [15]. Studies demonstrated 
that FLC-based MPPT improved dynamic 
response and energy extraction compared to 
conventional algorithms [16]. However, FLCs 
were found to be less effective in managing 
harmonic distortions introduced by the 
inverter, highlighting the need for enhanced 
solutions. 
Parallel to these developments, neural 
networks (NNs) were applied to PV systems 
due to their ability to learn nonlinear input-
output relationships [17]. NNs were trained 
using datasets of PV voltage, current, and 
irradiance to predict optimal operating points, 
thereby achieving faster and more accurate 
MPPT. Research showed that NNs provided 
smoother responses and higher efficiency 
under partial shading and fluctuating 
conditions [18]. Nevertheless, stand-alone 
NNs require significant training data and 
computational resources, which limit their 
practical implementation. 
Hybrid approaches combining FLC and NN 
emerged as a promising solution. These 
controllers exploit the interpretability and 
robustness of fuzzy logic while leveraging the 
adaptive learning of NNs [19]. Studies 
demonstrated that hybrid FLC–NN controllers 
outperformed both standalone FLC and NN in 
terms of MPPT efficiency, harmonic 
suppression, and dynamic stability. 
Experimental validations confirmed that the 
hybrid approach reduced THD to below 3%, 
ensuring compliance with IEEE standards 
[20]. Research also focused on converter 
topologies to support MPPT and grid 
integration. Conventional boost converters 
were widely used but suffered from efficiency 
limitations under low irradiance. Advanced 
topologies such as quadratic boost, interleaved 
boost, and coupled-inductor converters were 
proposed to achieve higher voltage gains and 
reduced ripples [21]. Intelligent controllers 

embedded in these converters further 
improved efficiency and dynamic response, 
highlighting the synergy between hardware 
design and control strategies. 
On the grid side, ensuring power quality and 
synchronization has been a key research 
theme. Traditional PI controllers for Voltage 
Source Converters (VSCs) provided basic 
regulation but were insufficient for harmonic 
suppression and transient response [22]. 
Researchers proposed adaptive controllers, 
predictive control methods, and AI-enhanced 
techniques to address these issues. Neural 
networks, in particular, were effective in 
predicting and mitigating harmonic distortion, 
while fuzzy logic provided robustness in 
synchronization tasks [23]. Recent trends in 
MPPT and grid integration emphasize the role 
of artificial intelligence in creating self-
learning, adaptive, and predictive controllers. 
Reinforcement learning, genetic algorithms, 
and deep learning methods have been explored 
to further enhance performance [24]. These 
methods enable predictive MPPT by 
forecasting solar irradiance and adjusting 
operating points proactively, thereby reducing 
energy losses. However, the computational 
demands of these approaches remain a barrier 
to widespread adoption. The present work 
builds upon these research trends by 
combining fuzzy logic and neural network 
controllers in a single-phase PV system. 
Unlike standalone methods, the hybrid FLC–
NN controller ensures both accurate MPPT 
and power quality enhancement. The literature 
indicates that such hybrid approaches 
represent a critical step toward intelligent, 
adaptive, and reliable PV-grid integration, 
aligning with global sustainability goals [25]. 
III. METHODOLOGY 

The methodology of this research involves the 
modeling, design, and control of a single-

phase grid-connected solar PV system using a 
hybrid fuzzy logic and neural network-based 
MPPT. The system architecture is designed in 
MATLAB/Simulink to evaluate performance 
under variable operating conditions. The PV 
array serves as the primary energy source, 
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modeled using standard equations relating 
current, voltage, irradiance, and temperature. A 
Step-Up Converter (SUC) is connected to the 
PV array to regulate the output voltage and 
transfer power to the DC link. The SUC is 
controlled using a hybrid FLC–NN MPPT 
algorithm. The fuzzy logic controller 
determines duty cycles based on PV voltage 
and current, while the neural network refines 
these control actions by learning from system 
behavior to minimize oscillations and improve 
adaptability. 
The DC link connects to a Voltage Source 
Converter (VSC), which converts the regulated 
DC power into AC power for grid integration. 
The VSC is designed with pulse width 
modulation (PWM) and controlled to ensure 
synchronization with grid voltage. The neural 
network contributes by dynamically adjusting 
modulation patterns to minimize THD. Load 
models and grid conditions are simulated to 
analyze system response under disturbances. 
Simulation studies are carried out to evaluate 
MPPT efficiency, DC link voltage stability, 
grid current quality, and THD levels. 
Comparative analysis between FLC-only and 
hybrid FLC–NN controllers highlights the 
improvements achieved. The methodology 
ensures that the proposed controller is not only 
effective in simulations but also adaptable for 
real-world deployment in single-phase PV-grid 
systems. 
IV. PROPOSED SYSTEM 

CONFIGURATION 

 

Fig 2 Proposed simulation circuit 
configuration 

Figure 2 illustrates the overall 
MATLAB/Simulink simulation circuit of the 
proposed single-phase grid-connected solar 

photovoltaic (PV) system. The system is 
designed with two key stages: a DC–DC step-

up converter (SUC) and a Voltage Source 
Converter (VSC). The PV array generates DC 
power, which is fed into the SUC controlled by 
a Maximum Power Point Tracking (MPPT) 
mechanism using a hybrid fuzzy logic and 
neural network (FLC–NN) controller. The 
SUC regulates the DC link voltage, ensuring it 
matches the required input for the VSC. The 
VSC converts DC into AC power, which is 
synchronized with the grid while maintaining 
sinusoidal waveforms and reduced harmonics. 
Essential components like measurement 
blocks, control loops, and synchronization 
units are highlighted in the configuration. This 
simulation framework allows the evaluation of 
system performance under variable solar 
irradiance and load conditions. The hybrid 
FLC–NN controller is integrated within the 
control loop to maximize energy extraction 
and improve power quality. The figure is 
crucial as it provides a comprehensive view of 
the system architecture, serving as the baseline 
model for analyzing both MPPT efficiency and 
harmonic distortion mitigation, ensuring the 
reliability and scalability of the proposed PV 
supply system. 

 

Fig 3 Solar irradiation, solar pv voltage, solar 
pv current, dc link voltage vs time under 

Dynamic performance under sudden change in 
solar irradiation and load petervation 

Figure 3 presents the dynamic response of 
solar irradiation, photovoltaic (PV) voltage, 
PV current, and DC link voltage under sudden 
changes in solar irradiation and load 
perturbation. The waveform of solar 
irradiation demonstrates variations that 
directly affect the PV module’s output. The PV 
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voltage and current signals exhibit transient 
fluctuations corresponding to the irradiance 
changes, showing how the system adapts to 
variable environmental conditions. The DC 
link voltage, which serves as the interface 
between the DC–DC converter and the Voltage 
Source Converter (VSC), remains regulated 
despite fluctuations in solar input. This 
stability indicates the effectiveness of the 
hybrid fuzzy logic and neural network (FLC–
NN) controller in ensuring a steady power 
supply even during disturbances. The figure 
highlights the controller’s ability to track the 
maximum power point (MPP) accurately, 
ensuring voltage regulation and minimizing 
oscillations during dynamic conditions. 
Maintaining a constant DC link voltage is 
essential for ensuring seamless power transfer 
to the grid, and the figure confirms that the 
proposed control approach provides both 
adaptability and robustness. This visualization 
is critical for validating the system’s capacity 
to handle real-time variability in solar 
conditions while maintaining operational 
stability and high efficiency. 

 

Fig 4 Grid voltage, grid current, load current 
vs time under Dynamic performance under 
sudden change in solar irradiation and load 

petervation 

Figure 4 demonstrates the dynamic 
performance of grid voltage, grid current, and 
load current under sudden changes in solar 
irradiation and load perturbation. The grid 
voltage remains stable, maintaining a nearly 
sinusoidal waveform, indicating successful 
synchronization between the Voltage Source 
Converter (VSC) and the utility grid. The grid 

current waveform reflects the effect of PV 
system injection into the grid, where current 
stability is maintained despite fluctuations in 
solar power. Load current shows variation 
depending on the power drawn, but the 
waveform remains in phase with the grid 
voltage, indicating effective power delivery 
with minimal distortion. The hybrid fuzzy 
logic and neural network (FLC–NN) controller 
contributes to this synchronization by 
regulating current injection and maintaining 
harmonic suppression. This figure validates 
the controller’s ability to ensure seamless 
power sharing between the PV system and the 
grid, providing consistent load support. It also 
demonstrates how intelligent control 
minimizes disturbances in grid current, thereby 
reducing harmonic distortion and maintaining 
compliance with IEEE-519 standards. Overall, 
this image emphasizes the role of advanced 
controllers in achieving stable and high-quality 
power delivery in grid-connected PV systems, 
even under highly dynamic environmental and 
load conditions. 

 

Fig 5 Solar power, grid power, load power vs 
time under Dynamic performance under 

sudden change in solar irradiation and load 
petervation 

Figure 5 depicts the power flow dynamics of 
solar power, grid power, and load power 
during sudden changes in solar irradiation and 
load perturbations. The solar power curve 
reflects the variability of irradiance, showing 
that the PV system adapts rapidly to maximize 
power extraction through the MPPT algorithm. 
Grid power fluctuates correspondingly to 
compensate for variations in solar generation, 
ensuring that the load demand is consistently 
met. When solar power decreases, the grid 
supplements the deficit, and when solar 
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generation is high, the load is supplied 
predominantly by the PV system, with any 
excess potentially exported to the grid. Load 
power remains steady throughout, illustrating 
the effectiveness of the hybrid fuzzy logic and 
neural network (FLC–NN) controller in 
maintaining a reliable supply. This figure 
highlights the balance and coordination 
achieved by the intelligent controller between 
solar generation, grid contribution, and load 
demand. It validates the system’s capacity to 
provide uninterrupted power with minimal 
oscillations, ensuring stability in energy 
delivery. Such dynamic response analysis is 
vital for real-world grid-connected PV 
applications, where fluctuating renewable 
sources must coexist with constant consumer 
demands, making the controller’s adaptability 
and robustness highly significant. 

 

Fig 6 Total harmonic distortion with fuzzy 
logic controller 

Figure 6 illustrates the Total Harmonic 
Distortion (THD) levels in the grid current 
when a fuzzy logic controller (FLC) alone is 
employed in the PV system. The waveform 
and harmonic spectrum show that while FLC 
improves MPPT efficiency compared to 
conventional methods, its capability to 
suppress harmonics is limited. The measured 
THD value in this figure highlights the extent 
of distortion present under dynamic operating 
conditions. This distortion may lead to 
inefficiencies, overheating of equipment, and 
potential non-compliance with IEEE-519 
harmonic standards if left unaddressed. The 
figure serves as an important benchmark to 
demonstrate the shortcomings of a standalone 
FLC-based control strategy. Although FLC 
provides adaptability in nonlinear PV 
behavior, it lacks the self-learning capacity to 
optimize switching patterns for effective 

harmonic reduction. Thus, while Fig 9.5 shows 
the relative improvement over traditional 
MPPT methods, it also underlines the need for 
an enhanced control strategy, such as the 
integration of a neural network (NN) 
controller, to achieve superior harmonic 
suppression and ensure high-quality grid 
power delivery. 

 

Fig 7 Total harmonic distortion with fuzzy 
logic along with NN controller 

Figure 7 presents the Total Harmonic 
Distortion (THD) results when the hybrid 
fuzzy logic and neural network (FLC–NN) 
controller is applied. Unlike the results in Fig 
9.5, the addition of the neural network enables 
adaptive learning and fine-tuning of control 
parameters, resulting in significantly reduced 
harmonic content. The THD spectrum in this 
figure indicates substantial improvement, with 
the distortion minimized to levels well within 
IEEE-519 standards. This confirms the neural 
network’s effectiveness in addressing the 
limitations of a standalone fuzzy logic 
controller. By dynamically adjusting inverter 
switching patterns and modulation strategies, 
the NN enhances current waveform quality, 
reducing low-order harmonics and improving 
sinusoidal fidelity. The comparison between 
Fig 9.5 and Fig 9.6 highlights the superiority 
of the hybrid control strategy in improving 
power quality while maintaining high MPPT 
efficiency. This figure is essential evidence of 
the project’s contribution, demonstrating that 
integrating neural network intelligence with 
fuzzy logic results in a more reliable, efficient, 
and grid-compliant PV system. It validates the 
central aim of the work: achieving both 
enhanced energy harvesting and improved 
power quality in single-phase grid-connected 
PV applications. 
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V. CONCLUSION  
This work presents the modeling and control 
of a single-phase grid-connected solar PV 
supply system using a hybrid fuzzy logic and 
neural network-based MPPT approach. The 
system integrates a step-up converter 
controlled by an FLC for maximum power 
extraction and a neural network controller for 
power quality improvement. Simulation 
studies in MATLAB/Simulink confirm that the 
hybrid controller significantly improves MPPT 
efficiency, reduces oscillations, and minimizes 
Total Harmonic Distortion (THD), ensuring 
compliance with IEEE power quality 
standards. Compared to conventional P&O and 
INC methods, the proposed system 
demonstrates superior adaptability and 
robustness under dynamic weather conditions. 
Its ability to provide reliable, high-quality 
power makes it ideal for residential and small-
scale grid-connected applications. By 
combining fuzzy logic with neural networks, 
the system leverages the strengths of both rule-

based reasoning and adaptive learning, 
creating a scalable and intelligent framework 
for renewable energy integration. 
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